FAIRCHILD

SEMICONDUCTOR

MM74HC32 Quad 2-Input OR Gate

General Description

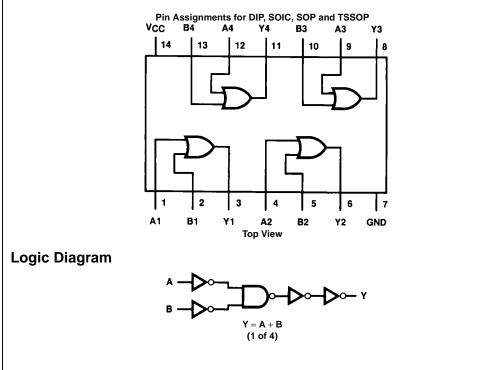
The MM74HC32 OR gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family.

All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

September 1983

Revised February 1999

Features


- Typical propagation delay: 10 ns
- Wide power supply range: 2–6V
- Low quiescent current: 20 µA maximum (74HC Series)
- \blacksquare Low input current: 1 μA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HC32SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC32MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to + 7.0 V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} + 1.5V
DC Output Voltage (V _{OUT})	–0.5 to $V_{CC}{+}0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

,		Min	Max	Units	
	Supply Voltage (V _{CC})	2	6	V	
	DC Input or Output Voltage	0	V _{CC}	V	
	(V _{IN} , V _{OUT})				
	Operating Temperature Range (T_A)	-40	+85	°C	
	Input Rise or Fall Times				
	$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns	
	$V_{CC} = 4.5V$		500	ns	
	$V_{CC} = 6.0V$		400	ns	
	Note 1: Absolute Maximum Ratings are those	e values t	pevond whi	ch dam-	

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	TA =	= 25°C	$T_A = -40$ to $85^{\circ}C$	Units
Gymbol	rarameter	Conditions	•00	Тур	Gu	aranteed Limits	onita
VIH	Minimum HIGH Level		2.0V		1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	V
			6.0V		4.2	4.2	V
VIL	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	I _{OUT} ≤20 μA	2.0V	2.0	1.9	1.9	V
			4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		I _{OUT} ≤ 4.0 mA	4.5V	4.7	3.98	3.84	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.2	5.48	5.34	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IL}$					
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	0	0.1	0.1	V
			4.5V	0	0.1	0.1	V
			6.0V	0	0.1	0.1	V
		$V_{IN} = V_{IL}$					
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	μA
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

	$T_A = 25^{\circ}C, C_1 = 15 \text{ pF}, t_r = t_f = 6 \text{ r}$	IS					
Symbol	Parameter	Condition	าร	Ту		Buaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay			10)	18	ns
	ectrical Characte to 6.0V, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ Parameter		Vcc	Ta =	25°C	T₄ = −40 to 8	35°C Un

(per gate)

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

Maximum Output Rise

and Fall Time

Power Dissipation

Maximum Input

Capacitance

Capacitance (Note 5)

 $t_{\mathsf{TLH}},\,t_{\mathsf{THL}}$

 C_{PD}

C_{IN}

6.0V

2.0V

4.5V

6.0V

9

30

8

7

50

5

17

75

15

13

10

21

95

19

16

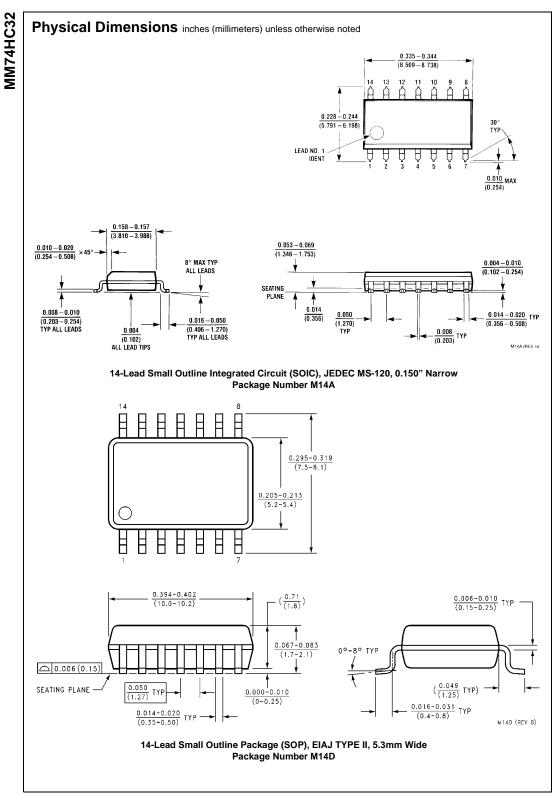
10

ns

ns

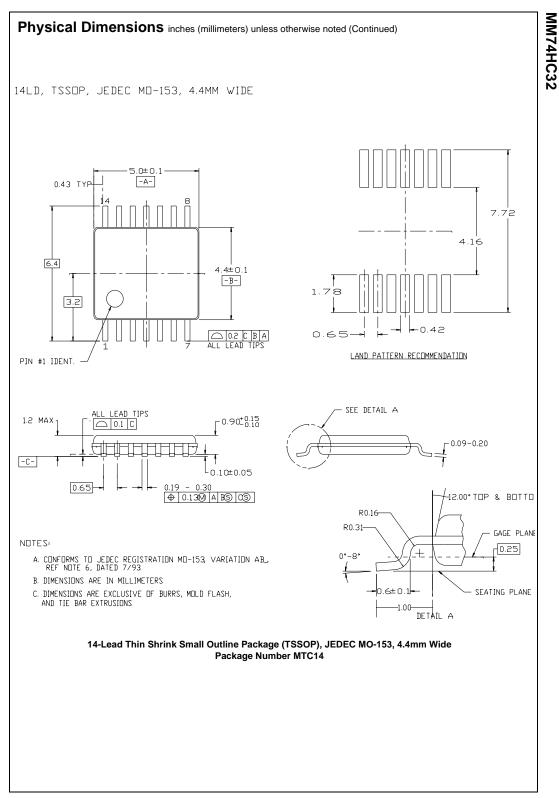
ns

ns

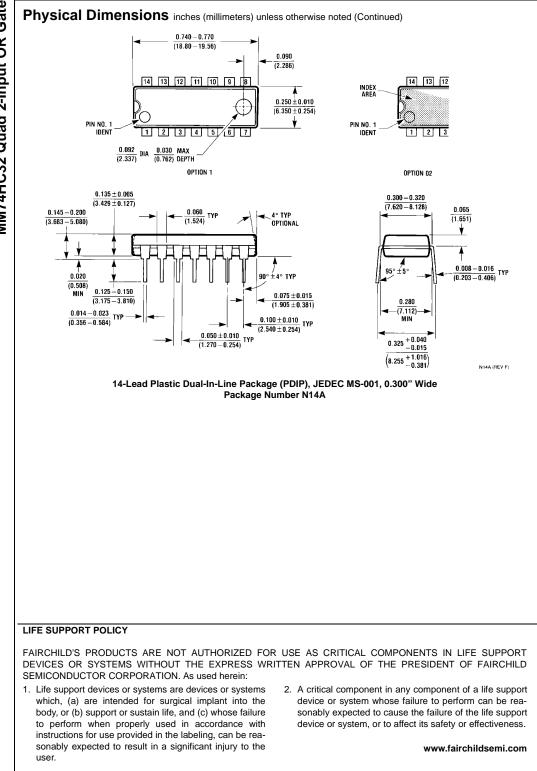

pF

pF

MM74HC32


www.fairchildsemi.com

3



www.fairchildsemi.com

4

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.